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Phase-equivalent potentials from supersymmetry 

D Baye 
Physique Theorique et Mathematique, C P  229, Universite Libre d e  Bruxelles, Brussels, 
Belgium 

Received 7 April 1987 

Abstract. Potentials providing the same phase shifts as  a given potential, and the same 
bound spectrum except possibly for the ground state, are  derived from combinations of 
supersymmetry transformations. The suppression of the ground state or the addition of a 
new ground state introduces an  additional r-’ singularity in the potential in agreement 
with a generalised Levinson theorem. Different properties o f the  phase-equivalent potentials 
and o f  their wavefunctions are established, discussed and illustrated by an  example. 

1. Introduction 

The application of supersymmetry to Schrodinger quantum mechanics (Witten 1981, 
Andrianov et a1 1984, Sukumar 1985a,b) has shed new light on the problem of 
constructing phase-equivalent potentials (Bargmann (1949); see Sukumar (1985b) for 
further references to the inverse scattering problem). The elementary technique 
involved in their determination is also known as a Darboux transformation (Deift and 
Trubowitz 1979). Supersymmetric partners of a radial Hamiltonian with a given central 
potentiai possess the same spectrum except for possible suppression of the ground 
state or addition of a bound state below it (Sukumar 1985b). However, according to 
the Levinson theorem, non-singular potentials whose numbers of bound states differ 
cannot provide equal phase shifts at all energies. On the other hand, potentials with 
an r-’ singularity satisfy a generalised Levinson theorem (Swan 1963) and may be 
phase equivalent in spite of different numbers of bound states. This property can be 
employed to clarify (Baye 1987) the longstanding problem of the relations between 
deep and shallow nucleus-nucleus potentials (see references in Michel and 
Reidemeister (1985) and Baye (1987)). An exact phase equivalence can indeed be 
derived between a deep potential and a singular shallow potential. 

The aim of the present paper is to analyse systematically the possible types of 
phase-equivalent potentials which can be constructed with combinations of Darboux 
transformations of the radial Schrodinger equation. Let us stress that our  point of 
view is complementary to Sukumar’s. In Sukumar (1985b), emphasis is laid on 
constructing ‘non-singular’ potentials (i.e. without any r-’ singularity other that the 
usual l ( l +  l ) F ’  centrifugal term). In  fact, this is phrased as ‘keeping the orbital 
momentum 1 constant’ but this terminology is confusing since Darboux transformations 
of a radial equation cannot modify 1. Of course, the restriction to non-singular potentials 
limits the study of phase equivalence to potentials with the same number of bound 
states. Here we adopt a different approach: we construct phase-equivalent potentials 
whose spectra are allowed to differ at most by one bound state and we study their 
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properties and wavefunctions. Three cases are considered: ( i )  suppression of the 
ground state, ( i i )  addition of a new ground state and (iii) no alteration of the spectrum. 
Case ( i i i )  does not require the introduction of a singularity and is already discussed 
in § 4.3 of Sukumar (1985b). 

In  § 2, the construction of supersymmetric partners of the radial Hamiltonian is 
summarised. Cases (i), (ii) and (iii) are discussed in turn in Q 3 and are illustrated by 
an example in § 4. Concluding remarks are presented in § 5 .  

2. Darboux transformations of the radial equation 

The radial differential equation of the Ith partial wave is 

Hi,b = (-d*/dr*+ V ( r ) ) +  = E$ (2.1) 
where units are chosen so that h2 /2m is unity. The real local potential V may include 
a Coulomb component, i.e. it may tend towards zero at infinity as F ' ;  V also includes 
the I ( / +  l ) F 2  centrifugal term. The notations in (2.1) d o  not refer explicitly to I since 
the orbital momentum is not modified by the Darboux transformation and since I plays 
almost no role in the following. The potential V is allowed to be singular in some 
sense; i t  is bounded for r > O  but behaves for small r values as 

where n is a positive integer. Notice that this is a rather peculiar singularity since V 
is positive near r = 0 and  the roots of the indicia1 equation are the integers n + 1 and 
-n. In  the usual terminology, V is regular if n = 1 and singular if n # 1. 

For a given E, a solution + of (2.1) is physical if i t  remains bounded everywhere 
and satisfies 

lim + = 0. 
r - 0  

(2.3) 

We reserve the notations E and i,b to physical eigenvalues and eigenfunctions. For an  
arbitrary '8 replacing E, solutions of the differential equation (2.1) will be denoted as 
cp. I f  

g=-$ Y > O  (2.4) 

l i m x - r n + ' / ( 2 n + 1 ) ! !  

is not a physical eigenvalue, we shall need the solution x regular at the origin such that 

r - 0  

lim x - exp( y r ) .  
r - x  

From x, we can define a second solution 

f = x  Ix (x ( t ) ) - ' d r  
r 

with the properties 

(2.5) 

l imf- (2n  - l)!!r- '  
r - 0  

lim f -  exp( - y r ) .  
r - a  

( 2 . 7 ~ )  

(2.76) 
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Following Sukumar (1985a, b) ,  let us factorise H as 

H = A'A-+ 8 (2.8) 

A- = ( A + ) ' =  - d / d r + d ( l n  cp)/dr 

where 8 is the factorisation energy. The operators A' and A- are defined by 

(2.9) 

where cp is a solution of the differential equation Hcp = 8cp. Notice that cp must be 
nodeless in order that A+ and A- be bounded. Hence 8 must be less than or equal 
to the ground-state energy E"" of H. In the latter case, cp must be the ground-state 
wavefunction $"I since other solutions possess a node. In  the former case, cp can be 
proportional to x, to f or to a nodeless combination of both. Then a sypersymmetric 
partner HI of H (or the Darboux-transformed operator HI)  can be defined as 

HI = A-A++ 8. 

The potential defined by HI is 

V I =  V + A V =  V-2d2(lncp)/dr ' .  (2.10) 

The behaviour of h V near r = 0 depends on the choice of cp but it is readily shown 
from (2.5) and (2.7) that any Darboux transformation introduces a singularity in the 
potential, except possibly for n = 0. For r large, AV decreases as r-' but we shall not 
need this property in the following. To each wavefunction CC, of H corresponds a 
wavefunction of H ,  given by 

i,bI = exp( id ) (E  - 8)-"'A-$ (2.11) 

except if A-$ vanishes or does not satisfy (2.3). The spectra of H and HI are then 
identical except possibly for their ground states. Convenient choices for the phase 4 
are discussed below. Let us now consider in turn the different types of Darboux 
transformation. 

I f  % = E"'= - y i  and cp = 4"' (Sukumar's transformation TI),  the ground state is 
suppressed since A-4"' = 0. The singularity of the new potential is given by 

lim V , - ( n + 1 ) ( n + 2 ) r - ~ .  (2.12) 
r - 0  

The wavefunctions of HI are given by (2.11) where we choose 4 = 0. Let us apply the 
asymptotic form of A- to the asymptotic form o F a  scattering wavefunction (with k, 
77 and 6 as wavenumber, Sommerfeld parameter and phase shift respectively). One 
obtains 

lim A - s i n ( k r - i h - 7  I n 2 k r i S )  
r - 0 2  

- sin[kr -+lr - 77 In 2kr+ 6 + tan - ' (k /yn ) ]  

which shows that the phase shift is increased by tan-l(k/y,). It is convenient to 
transform cp'$ - cp4' in (2.11) with the help of the differential equation (2.1) to rewrite 
41 as 

4,  = ( E  - E(0))1/2[4"l]-1 1; $L'''$ dt. 

The behaviour of near r = 0 is then given immediately 

iim - r"+' 
r - 0  

(2.13) 

by 

(2.14) 
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in agreement with (2.12). 

cp can be defined as 
I f  8 < E‘”,  the transformation T2 adds a new ground state at energy 8. The function 

(2.15) 

where 4 is any solution of HG = 8$ whose inverse is square integrable and  normalised 
to unity. The function cp is nodeless if 

a ( a  + 1 ) > 0  (2.16) 

since I: (F-> d t  lies between 0 and 1. Its inverse is also square integrable and normalised 
to unity. Another useful definition of cp can be given in terms of a solution x at energy 
8 with the properties (2.5). One has 

(2.17) 

with the condition 

c y ’ >  0 (2.18) 

since the integral can take any value between 0 and +CO. Notice that these expressions 
for 9 are related by x = (F SI; (F-’ d t  and a’=  a ( a  + l)-’. Other definitions of cp can be 
derived but we shall only need (2.15) and (2.17) in the following. The potential V ,  
behaves near r = 0 as 

(2.19) 

The singularity is modified, except for n = 0. However, we shall see below that H and 
Hi do  not have the same spectrum for n = 0. The normalised ground-state wavefunction 
of HI is given by 

$ y =  p-1. (2.20) 

The other wavefunctions are given by (2.1 1 )  with the convenient choice 4 = T.  Since 
9 behaves as exp( y r )  for large r values, the same reasoning as for the T,  transformation 
shows that the phase shift is decreased by tan-.’(k/y).  The wavefunctions can be 
rewritten as 

The additional definite integral in the bracket is the integration constant appearing 
when evaluating cp’4 - p$‘. With (2.211, one has, in agreement with (2.19) 

lim $, - r” .  
r - 0  

(2.22) 

This relation shows that ,J, does not satisfy condition (2.3) for n = O .  Trying to add 
a bound state to a potential with n = 0 produces a non-singular potential V i .  However, 
the spectra of H and H, are different since the solution A - 4  at energy E is not a 
physical eigenstate of H i .  For the same reason, there is no simple relation between 
their phase shifts. The n = 0 case is therefore useless for the construction of phase- 
equivalent potentials but is an  interesting example of supersymmetric partners whose 
spectra are not simply linked. 
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If cp = x (transformation T3) ,  the spectra of H and H, are identical. The singularity 
of V, is given by (2.12). The wavefunctions are given by (2.11) with 4 = r.  Here and 
in the next case, we choose the phase 4 differently from Sukumar (1985b) for later 
convenience. Then 

* I -  - - ( E  - 8 ) 1 : y  1; Xl l ,  d t  (2.23) 

shows that behaves near r = O  as in (2.14). The phase shift increases by tan- ' (k /y) .  
Except for small r values, T3 behaves as a limit of T2 for a' tending towards infinity 
in (2.17) or a tending towards -1 in (2.15). 

I f  cp = f (transformation T,), the spectrum is also left in general unchanged by the 
transformation. The singularity of VI is given by (2.19). The wavefunction is given 
by (2.11) with 4 = O  or by 

(2.24) 

The phase shift decreases by t an - ' (k ly ) .  The behaviour for r + O  is given by (2.22). 
Notice that here also, the case n = 0 leads to a different spectrum. Except asymptoti- 
cally, T, behaves as the limit of T2 for CY' tending towards 0 in (2.17). 

The different types of Darboux transformations and their main properties are 
summarised in table 1. They depend on the choice of the separation energy and, if 
'8 < E"', on the choice of cp. The different transformations can be combined in two 
successive steps. Sukumar (1985b) has discussed the cases for which the singularity 
is not modified after the second step (remember that the second step corresponds to 
n ,  = n * 1). The non-trivial cases are then ( T I ,  T,), ( T 3 ,  T 2 )  and ( T I ,  Tz) .  Here we 
focus on combinations which generate phase-equivalent potentials. The non-trivial 
cases are ( T I ,  T3)  (see Baye 1987), ( T 4 ,  T2) and ( T I ,  T2).  We discuss them in turn in 
the next section. 

Table 1. Properties of Darboux transformations 

Singularity Phase shift 
c cs Action on the spectrum modification modification 

3. Phase-equivalent potentials 

3.1. Suppression of the ground state 

With T I ,  the ground state is suppressed and the phase shift is modified by -tan-'( k /  yo)  
(see table 1). This phase shift change can be compensated by performing a transforma- 
tion T3 with % = E"". Notice that T3 must follow TI since there must be no physical 
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state at energy 8. The combined transformation leads to a potential V2 with singularity 

lim v,- ( n  +2) (  n +3)r-2.  (3.1) 
r - 0  

This behaviour is a natural consequence of the generalised Levinson theorem (Swan 
1963) as shown in Baye (1987). 

This two-step process can be reduced to a single one. The function xI  of the second 
transformation is the solution, bounded near r = 0, of (see (2.10)) 

H,,yl = [ H -2(d'/dr') In (L'O'],yI = E")'xI .  

It can be expressed as 

xI  = [ (L'"]-' 1: [ dt. (3.2) 

Combining the two potential modifications -2(d'/dr') In G"' and -2(dz/dr2) In xI  
(from (2.10)) yields 

d2  
dr2 

V, = V - 2 - In 1: [ (L'o)]2 d t. (3.3) 

The potential V, can thus be obtained in a single step from the ground-state wavefunc- 
tion of H. With (3.3), it is easy to prove (3.1) directly. Also (3.3) shows that, for large 
r values, 

d 
d r  

v*- V-2-[(L'0']2 (3.4) 

so that the two potentials do  not differ significantly as soon as (L'"' becomes small. 
The wavefunctions GZ of H z  can also be obtained directly from the wavefunctions 

of H. Let us combine (2.13) for the first step TI with (2.11) for the second step T3.  
Our choice for the phase C#J and (3.2) then lead to 

(3.5) 

Clearly, the wavefunctions (L, and (L have the same asymptotic behaviour as soon as 
$(" is negligible. In particular, for positive energies, (Lz and $ provide the same phase 
shifts. Equation (3.5) also displays the fact that no wavefunction of H 2  corresponds 
to (L'"'. Finally, a direct calculation shows that for bound states 4, and (L have the 
same normalisation. 

3.2. Addition of a new ground state 

With T,, a new bound state is added below the ground state, at energy 8, but the 
phase shift is modified by tan- ' (k/y) .  This phase shift change can be corrected with 
a transformation T4 involving the same separation energy. However, the fact that 8 
must be less than the ground-state energy implies that T4 must precede T,. The 
singularity modifications (see table 1) then lead to 

lim v,- ( n  -2)(n - I ) r - '  n>O (3.6) 

in agreement with the generalised Levinson theorem. However, the n values for which 
(3.6) is valid and V, is phase equivalent to V require a closer examination. 

r - 0  



Phase-equivalent potentials f r o m  supersymmetry 5535 

The first transformation T4 is performed with a function A which is the solution, 
bounded at infinity, of Hf = 8fi The function $, appearing in the second transformation 
T2 is easily expressed as a function o f f  

where we have chosen ,y = f - ’  in (2.17). The definition of the positive parameter LY is 
unambiguous if the normalisation off is defined (see ( 2 . 7 ~ ) ) .  The potential resulting 
from the combined transformation is 

d Z  
dr-  

V, = V - 2 7 In( a + f’ d t ) , 
With (2 .7)  and (3 .8)  it is easy to prove that (3 .6)  holds for n > 0 and that V, and V 
have the same behaviour for large r values since f decreases exponentially. 

With (2 .24)  for T4, (2.1 1 )  for T, and (3 .7) ,  one obtains the wavefunctions of H 2  as 

(3 .9)  

This expression shows that GZ and I,!I have the same asymptotic behaviour and  therefore 
provide for positive energies the same phase shifts. In addition, the wavefunction of 
the new ground state is given by (2.20) as 

(3 .10)  

It is readily verified by direct calculation that this wavefunction is orthogonal to the 
other ones and that the different bound-state wavefunctions are normalised. 

Equations (3 .9)  and (3 .10)  provide the conditions at which a bound state can be 
added to a given potential. Indeed, let us consider the behaviour of any wavefunction 
iZ (including $ y ’ )  at small r values. Since 

f+ d t  < 

one has with ( 2 . 7 0 )  

Iim iZ - r*-l n>O 

- 1  n = O .  

r - I1  

(3 .11)  

The functions +? d o  not satisfy the condition (2 .3)  for n = 0 or 1. In  these cases, the 
potential V, calculated with (3 .8)  does not present an r -2  singular behaviour. However, 
its physical eigenfunctions are not given by (3 .9)  and (3.10) and appear at other 
energies. The potential has a bound spectrum which differs from the spectrum of V 
and provides different phase shifts. The contents of the present paragraph are therefore 
restricted to potentials whose index n is greater than 1 .  I f  n > 1, phase-equivalent 
potentials depending on two free parameters 8 < E“” and cy > 0 can be constructed. 

3.3. Unchanged spectrum 

Table 1 indicates that several combinations of Darboux transformations lead to phase- 
equivalent potentials with an unchanged spectrum if they make use of the same 
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separation energy 8. However, it is easily shown that the combinations (T , ,  T4) and 
( T4, T3)  d o  not modify the potential. The only interesting case is therefore to suppress 
the ground state with TI and to reintroduce it at the same energy with T2 (Sukumar 
1985b). N o  singularity is introduced in this process. The potential V, differs from V 
because of the existence of a free parameter in T'. Notice that T2 followed by TI 
would not modify the potential since the added ground state would be suppressed 
with the inverse transformation for any choice of the parameters %% and a. 

The first transformation TI makes use of 4"". For the second transformation T, ,  
we choose cp = [ $ ' " ' ] - I  in (2.15) so that 

with the condition (2.16) (cy-' is Sukumar's A ) .  The new potential is 

V, = V-2- ln la  d' + 1: dr 1 .  
dr' 

(3.12) 

(3.13) 

Notice the absolute value, which is necessary if a < -1. Again, with (3.13), one readily 
shows that V, behaves near r = O  as in (2.2) and does not differ from V when 4"' 
becomes negligible. 

With (2.13), (2.11), (2.20) and (3.121, one obtains 

for 9 # I,!I"" and 

(3.14) 

(3.15) 

Notice that (3.15) is not a particular case of (3.14) for a question of normalisation. 
The wavefunctions $. and $ differ by a short-ranged term and provide the same phase 
shifts at positive energies. For small r values the second term in the expression (3.14) 
of $: is smaller than the first one because of the orthogonality between $ l c O )  and 4. 
The functions $? and $ present the same r n + '  behaviour in agreement with the properties 
of the potential. 

Finally, i t  is worthwhile discussing here the limiting cases cy = 0 and a = -1. For 
cy = 0, (3.12) and (2.7) show that cpI is in fact a function fl. The transformation T. 
becomes T, and table 1 indicates that the phase shift is modified by the combined 
transformation. We shall exemplify this point in B 4. For a = -1, cpI becomes ,yl (see 
(2.5)), T, becomes T, and one recovers the case discussed in B 3.1 where the ground 
state is suppressed. This property is also illustrated in Ej 4. 

4. An illustrative example 

Here we illustrate some of the properties discussed in B 3 and clarify their interpretation 
with a realistic potential encountered in nucleus-nucleus collisions. We choose the 
simple potential of Buck et a1 (1977) which reproduces accurately the 1 = 0-6 phase 
shifts of a + a scattering between 0 and 40 MeV in the centre of mass frame. For 1 = 0, 
this potential is given in MeV, for r in fm, by 

V(r) = -122.6225 exp(-0.22r2)+4e' erf(0.75r)lr. (4.1) 
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-200- 

The other 1 values are obtained by adding the usual centrifugal potential with h 2 / 2 m  = 
10.368 MeV fm2. The corresponding Hamiltonian possesses two bound states with 1 = 0 
and one with 1 = 2 (odd partial waves are unphysical because of the identity of the 
colliding bosons). 

The 1 = 0 potential is illustrated by the lower broken curves in figure 1; the energies 
of its bound states are also displayed. Suppressing the ground state as in 9 3.1 leads 
to the phase-equivalent potential represented by the upper broken curve on the RHS 

of figure 1. (The labelling -1 of this curve is explained below.) Iterating the procedure 
to suppress the excited state provides a potential which is discussed in Baye (1987). 

r I  . f m )  I 

-150 i 
\ \ U = - 1  / I 

- 2 5 . 0 6  MeV \ 

f ’  I / / I 

I , 
I 

-72.11 MeV 

2 

3 

Figure 1. The I = 0 potential ( -  - - )  of equation (4 .1)  and the phase-equivalent potentials 
(-) for different values of a (equation (3 .13 ) )  plotted for (I > O  on L H S  and a < -1 on 
R H S .  The upper envelopes of the potentials are also shown (--) coinciding on the R H S  

with the phase-equivalent potential (3 .3)  for CI = -1. The bound state energies of the I =  0 
potential are indicated at -25.86 MeV and -72.77 MeV. 
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Trying to add a bound state to potential (4.1) fails in agreement with the discussion 
in 0 3.2; the resulting potential provides a different bound spectrum and different phase 
shifts. Now we make use of potential (4.1) to clarify the properties of phase-equivalent 
potentials with an unchanged spectrum (§  3.3). The phase-equivalent potentials are 
calculated numerically from (3.13). The wavefunction I)") is computed with a standard 
Numerov technique (Raynal 1972) at equally spaced mesh points with a step h. The 
integral jb [ I)'"]' d t  is determined at each mesh point with the Adams 'interpolation' 
formula (Abramowitz and Stegun 1972, equation 25.5.5). The second derivative is 
calculated with a five-point differentiation formula. For h = 0.01, the energies of the 
different phase-equivalent potentials reproduce those corresponding to (4.1) with an 
accuracy better than 
up to 200 MeV. 

Potentials obtained with (3.13) for positive values of parameter a are presented as 
full curves in the LHS of figure 1. For a large a value, the new potential V, does not 
differ much from V (lower broken curve) since {: [$("I2 d t  is bounded by unity. The 
difference between both potentials increases when a decreases. For any N > 0, V2 is 
equal to V for r = 0 and  larger than V for small r values owing to the fact that the 
logarithm in (3.13) reaches its maximum I n ( a +  1) at r = O  with an  r2"+' behaviour. 
On the other hand, for large r values, the logarithm tends exponentially towards its 
minimum In a so that V, tends exponentially towards V from below. Hence the 
continuous potential V,  is equal to V at some intermediate point. When a becomes 
small, a second well appears whose minimum moves towards large r values as the 
logarithm of a. The ground-state wavefunction becomes essentially concentrated in 
this well while the first excited state remains located at smaller distances. The node 
in the excited wavefunction which ensures the orthogonality with the ground state 
follows the delocalisation of the second well. For a = 0, the ground-state well disap- 
pears and the excited state becomes the (nodeless) ground state of a potential which 
is the upper envelope of the different potentials V 2 .  This limit potential is not phase 
equivalent to V in agreement with the Levinson theorem. 

Potentials corresponding to a values less than -1 are displayed as full curves in 
the RHS of figure 1. The relative locations of V and V, are interchanged with respect 
to a > 0. The potentials d o  not differ much when I cy1  is large, as expected. When cy 

tends towards -1, the ground state is progressively squeezed in a deep narrow well 
located near r = 0. At the limit a = -1, this well disappears and  the potential becomes 
the upper envelope of the different potentials V , .  Here, however, the limit potential 
remains phase equivalent by becoming singular. This potential is obtained directly 
with the ground-state suppression. 

The I = 2 potential, with its 6 F 2  singularity can be employed to illustrate the addition 
of a bound state as shown in figure 2. This potential possesses a single bound state 
at -22.28 MeV. The numerical technique is similar to the one described above but the 
function f appearing in (3.8) is calculated backwards. The accuracy of the results is 
poorer than in the preceding case. For the smaller step h =0.0025, the energy 'g of 
the added ground state is obtained to an accuracy of lo-' MeV but the energy of the 
former ground state is reproduced to only MeV. The accuracy of the phase shifts 
is better than 2 x up  to 200 MeV. The potential VI varies strongly at small r values 
since l i m , , , ~ ~ f 2  d t  diverges. A cutoff of the potential for these r values stabilises the 
numerical computation without modifying the energies and  phase shifts. Adding a 
bound state introduces two degrees of freedom. As an  example, we have added a 
bound state at -50 MeV or at -100 MeV for three values of the parameter a. The new 

MeV. The accuracy of the phase shifts is better than 
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-50- 

I 
-100- 

' I  
I 2 'I 

' I  

I 

1 

I 
I 

-1 
I 
I 

-150 

-200- 

\ 
\ 

-50  MeV 

a.01 -100 MeV- _ -  

5539 

Figure 2. The I = 2 potential with a single bound state at E'"' = -22.28 MeV (- - - )  and 
the phase-equivalent potentials for the addition of a bound state at = -50 MeV (-) 
or = -100 MeV (--) for different values of a (equation (3.8)). 

ground state is essentially localised in a rather narrow well whose minimum varies 
logarithmically with a. As expected from (3 .8) ,  V2 tends faster towards V for large r 
values if 181 or a increases. 

5. Conclusions 

Supersymmetric quantum mechanics allows one to derive potentials which provide the 
same phase shifts as a given potential, even if the number of bound states is modified. 
However, adding a bound state or suppressing the ground state yields a modification 
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of the potential singularity at the origin in agreement with a generalised Levinson 
theorem (Swan 1963). In particular, the addition of a new ground state requires that 
the potential be already singular. Otherwise, the potential obtained from the Darboux 
transformation leads to a different spectrum and different phase shifts. 

From a numerical point of view, the phase-equivalent potentials arising from 
suppressing the grouad state or leaving the spectrum unchanged are determined to an 
excellent accuracy without very elaborate procedures. On the other hand, adding a 
bound state is far less accurate and, for small r values, is unstable. 

Most of the phase-equivalent potentials presented as examples display a rather 
complicated shape. They present additional maxima and minima which are well 
explained by the properties of the potential modification AV, Only the ground-state 
suppression provides simply shaped curves. Therefore we think this case should have 
the most useful applications. For example, it resolves the ambiguities observed in the 
construction of accurate cr + cr scattering potentials (Baye 1987). 
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